limx→∞(√x2+x−x) equals
limx→∞(√(x2+x)−x)
Put x = 1t
∴ = limt→0(√(1t2+1t)−1t)
On rationalisation we get the above expression = 12
Now, Let's Check the options -
Option (a):
limx→0x+In(1−x)x2
= limx→01−1(1−x)2x (by L'Hospital's rule)
=−12
Option (b):
= limx→0e−x−1+xx2
= limx→0−e−x−0+12x (by L'Hospital's rule)
= limx→0e−x+02 = 12
Option (c):
= limx→0−√x√x+√(x2+2x)
= limx→011+√(x+2) = -1(1+√2)
Option (d):
= limx→0cos x2−1x4
Put x2 = t
limt→0cos t−1t2
= limt→0−sin t2t (by L'Hospital's rule)
= −12