The correct option is B −13
cos(tanx)−cos x=2sin(x+tan x2)sin(x−tanx2)
or limx → 0cos(tan x)−cos xx4=limx → 02sin(x+tan x2)sin(x−tan x2)x4
=limx → 02sin(x+tan x2)sin(x−tan x2)x4(x+tan x2)(x−tan x2)(x2−tan2 x4)
=12limx → 0x2−tan2 xx4
=12limx → 0x2−(x+x33+215x5+.....)2x4
=12limx → 01x2(1−(1+x23+215x4+...)2)=−13