The correct option is B (1)
Given limx→0esinx−1x
Since, we have a formula limx→0ex−1x=1
Since as x→0 implies sinx→0 as well.
⇒limsinx→0esinx−1sinx=1
To get into above form, multiply given expression bysinxsinx
=limx→0esinx−1x×sinxsinx
=limx→0esinx−1sinxxsinx
=limx→0esinx−1sinx×limx→01xsinx
=limsinx→0esinx−1sinx×limx→0sinxx
=1×1 [Since, from above formula and limx→0sinxx=1]
=1.