The correct option is A 4nC2n
limx→−1(1+x)(1−x2)(1+x3)(1−x4)⋯(1−x4n)[(1+x)(1−x2)(1+x3)(1−x4)⋯(1−x2n)]2
= limx→−1(1+x2n+1)1+xx(1−x2n+2)1−x2x⋯(1−x4n)1−x2n
= limx→−1(x2n+1−(−1)2n+1)x−(−1)x(x2n+2−(−1)2n+2)x2−(−1)2x⋯(x4n−(−1)4n)x2n−(−1)2n
=2n+11.2n+22.2n+33.2n+44....4n2n=4nC2n