The correct option is D 23√3
L=limx→a√a+2x−√3x√3a+x−2√x
This is 00 form
⇒L=limx→a√a+2x−√3x√3a+x−√4x×√a+2x+√3x√a+2x+√3x×√3a+x+√4x√3a+x+√4x⇒L=limx→a(a+2x−3x)(√3a+x+√4x)(3a+x−4x)(√a+2x+√3x)⇒L=limx→a(a−x)(√3a+x+√4x)3(a−x)(√a+2x+√3x)⇒L=limx→a(√3a+x+√4x)3(√a+2x+√3x)⇒L=√4a+√4a3(√3a+√3a)⇒L=43(2√3)=23√3