The correct option is
A 1Solution:- (A) 1Let x=1y⇒ As x→∞,y→0
∴L=limy→0
⎷1y−sin(1y)1y+cos2(1y)=limy→0
⎷1−ysin(1y)1+ycos2(1y)
sin(1y) and cos2(1y), both are bounded functions.
sin(1y)∈[1,1] for all y∈R and cos2(1y)∈[0,1] for all y∈R.
⇒limy→0ysin(1y)=0 and limy→0ycos2(1y)=0
⇒limy→0
⎷1−ysin(1y)1+ycos2(1y)=limy→0√1−01+0=1
⇒limx→∞√x−sinxx+cos2x=limy→0
⎷1−ysin(1y)1+ycos2(1y)=1