The correct option is C 12
L=limx→1(1lnx−1x−1) [∞−∞ form]
Put x=1+h
L=limh→0(1ln(1+h)−1h)
=limh→0h−ln(1+h)hln(1+h)
=limh→0h−ln(1+h)h2ln(1+h)h
⇒L=limh→0h−ln(1+h)h2 ⋯(1) (∵limh→0ln(1+h)h=1)
⇒L=limh→0h−[h−h22+h33−h44+⋯]h2
=limh→0h2[12−h3+h24−⋯]h2
=12
Alternative Solution :
From equation (1)
by L'Hospital rule,
L=limh→01−11+h2h
Again differentiation with respect to h
L=limh→00+1(1+h)22
=12