limn→∞13+23+33+....+n3(n−1)4
=limn→∞[n(n+1)2]2[n(1−1n)]4
[∵13+23+33+...+n3=[n(n+1)2]2]
=limn→∞n2(n+1)24n4(1−1n)4=14
=limn→∞n4(1+1n)2n4(1−1n)4
=14(1+1n)2(1−1n)4
as n→∞,1n→0
=14(1+01−0)
=14
limn→∞13+23+33+....+n3n4