limn→∞n21+2+3+....+n
=limn→∞n212n(n+1)
[∵1+2+3+...+n=n(n+1)2]
=limn→∞2n2n2+n=2limn→∞n2n2+n
=2limn→∞n2(1+1n)=2×11+0=2
limn→∞(1n2+2n2+3n2+....+n−1n2)