wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limn(1n+n2(n+1)3+n2(n+2)3++18n) is equal to

Open in App
Solution

1n+n2(n+1)3+n2(n+2)3+...........+n2(n+n)3=n2n3+n2(n+1)3+n2(n+2)3+.........+n2(n+n)3=1n[n3n3+n3(n+1)3+n3(n+2)3+...........+n3(n+n)3]=1n1(nn)3+1(nn+1n)3+1(nn+2n)3+...........+1(nn+nn)3=10dx(1+x)3=[(1+x)2]102=12[1(1+x)2]10=12[141]=12[114]=12×34=38

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon