limn→∞[11.3+13.5+15.7⋯1(2n+1)(2n+3)] is equa to
12
limn→∞[11.3+13.5+15.7⋯1(2n+1)(2n+3)]
Here, Tn=1(2n+1)(2n+3)
⇒Tn=A(2n−1)+B2n+1
On equating A=12 and B=−12:
Tn=12(2n−1)−12(2n+1)
⇒T1=12[1−13]
⇒T2=12[13−15]
⇒Tn−1=12[12n−1−12n−1]
⇒Tn=12[12n−1−12n+1]
⇒T1+T2+T3⋯Tn=12[1−12n+1]
⇒T1+T2+T3⋯Tn=12[2n2n+1]
⇒T1+T2+T3⋯Tn=n2n+1
∴limn→∞[11.3+13.5+15.7⋯1(2n+1)(2n+3)]
=limn→∞[∑nn=11(2n+1)(2n+3)]
=limn→∞(n2n+1)
=limn→∞(12+1n)
=12