limn→∞[1−2+3−4+5−6+⋯(2n−1)−2n√n2+1+√n2−1] is equal to
−12
limn→∞[1−2+3−4+5−6+⋯(2n−1)−2n√n2+1+√n2−1]
=limn→∞[(1+3+5+⋯2n−1)−(2+4+6+⋯2n)(√n2+1+√n2−1)]
=limn→∞[n2(1+2n−1)−n2(2+2n)(√n2+1+√n2−1)]
=limn→∞[n2−n(n+1)(√n2+1+√n2−1)]
=limn→∞[−n(√n2+1+√n2−1)]
Dividing the numerator and the denominator by n:
=limn→∞⎡⎢
⎢
⎢⎣−1√1+1n2+√1−1n2⎤⎥
⎥
⎥⎦
=−11+1=−12