limn→∞(1n2+2n2+3n2+....+n−1n2)
limn→∞(1+2+3+....(n−1)n2)
=limn→∞(n−1)(n)2×n2
[1+2+3+....+(n−1)=(n−1)(n)2]
=limn→∞n2−n2n2 [∞∞form]
=limn→∞1−1n2
=1−02=12
=12