The correct option is
A tan−1(2)limn→∞n∑r=1cos−1(r2+34)tan−1(1r2+3/4)
tan−1(44r2+3)
tan−1(44r2+4−1)
tan−1(1r2+1−14)
tan−1[(r+12)−(r−12)1+(r−12)(r+12)]
n∑r=1tan−1(r+12)−tan−1(r−12)
[tan−1(32)−tan−1(12)]+[tan−1(n−12)−tan−1(32)]+[tan−1(n+12)−tan(n−12)]
limn→∞tan−1(n+12)−tan−1(12)
limn→∞tan−1(n+12)=π2
=π2−tan−1(12)
=π2−cos−1(2)
=tan−1(2)
Hence, option (A) is correct.