T(r)=r1×3×5×⋯×(2r+1)
=2r+1−12(1×3×5…(2r+1))
=12(11×3×5…(2r−1)−11×3×5…(2r+1))
=−12[V(r)−V(r−1)]
⇒n∑r=1T(r)=−12(V(n)−V(0))
as all other terms get cancelled out due to repetitive addition
=12(1−11×3×5×⋯×(2n+1))
limn→∞n∑r=1r1×3×5×⋯×(2r+1)
=limn→∞n∑r=112(1−11×3×5×⋯×(2r+1))
=limn→∞12(1−11×3×5×⋯×(2n+1))