limπ→∞ 1n ∑2nr=1r√n2+r2=
The correct option is A. −1+√5
L=limπ→∞∑2nr=1 1n. rn√1+(rn)2=∫20 x√1+x2dx
Put 1+x2=t2
⇒xdx=t dt
x=0 then t=1
x=2 then t=√5
Now,
∫20 x√1+x2dx
=∫√51 ttdt
=∫√51 1 dt
=[t]√51
=√5−1
Hence, Option A is correct.
limπ→∞ 1n ∑2nr=1r√n2+r2 equals [IIT 1997 Re-exam]