limx→0(cosx+asinbx)1x
limx→0(cosx+asinbx)1x=limx→(1+(cosx+asinbx−1))1x=elimx→0(cosx+asinbx−1)x=elimx→0(asinbx−(1−cosx))x=elimx→0(asinbx−2sin2(x2))x=elimx→absinbxbx−limx→02sin(x2)sin(x2)2(x2)=elimx→0absinbxbx−limx→02sin(x2)sin(x2)(x2)=eab−0=eab