Wehavelimx→0tanx−sinxsin3x=limx→0sinxcosx−sinxsin3x=limx→0sinx−sinx.cosxsin3x=limx→0sinx(1−cosx)cosx.sin3x=limx→01−cosxcosx.sin2x=limx→01−cosxcosx(1−cos2x)=limx→01−cosxcosx(1+cosx)(1−cosx)=limx→01cosx(1+cosx)=1cos0(1+cos0)=11(1+1)=12
Hence, this is the answer.