Consider the given function:
f(x)=limx→0(1x2−1sin2x)
=limx→0(sin2x−x2x2sin2x).x2x2
=limx→0(sin2x−x2x4)(x2sin2x)
weknowthat(00)form,
=limx→02sinxcosx−2x4x3.1
=limx→02(−sinxsinx+cosxcosx)−212x2
=limx→02(cos2x−sin2x)−212x2
=limx→02cos2x−212x2
=limx→0−4sin2x−024x2
=limx→0−4(sin2x2x).(12)
=−412.1=−13
Hence this is the answer.