limx→02x√a+x−√a−x
Rationalising the denominator
=limx→02x(√a+x−√a−x)×√a+x+√a−x(√a+x−√a−x)
=limx→02x(√a+x+√a−x)((a+x)−(a−x))
=limx→02x√a+x+√a−x2x
=limx→0(√a+x−√a−x)=√a+√a
=2√a