limx→0(a+h)2sin(a+h)−a2sinah
limh→0(a+h)2sin(a+h)−a2sinah
=limh→0(a2+2ah+h2)sin(a+h)−a2sinah
=limh→0(2ah+h2)sin(a+h)+a2sin(a+h)−a2sinah
=limh→0(2ah+h2)sin(a+h)h+limh→0a2sin(a+h)−a2sinah
=limh→0(2ah+h)sin(a+h)+a2limh→0sin(a+h)−sinah
=(2a+0)sin(a+0)+a2limh→02sin(h2)cos(2a+h2)h
=2a sin a+a2×limh→0sin(h2)h2×limh→0cos(2a+h2)
=2a sin a+a2×1×cos(2a+02) (limθ→0sinθθ=1)
=2a sin a+a2 cos a