limx→0sinx∘x∘
=limx→0sinx×π180x×π180 [∵1∘=π180 radians]
=limπ180→0sinπx180π180 [∵If x→0 then π180→0]
=1 [∵limx→0sinxx=1]
The value of limx→0sinαx+bxax+sinbx is (a,b,a+b≠0)