limx→0√1+x2−√1+x√1+x3−√1+x
limx→0√1+x2−√1+x√1+x3−√1+x [It is of (00) form]
Rationalising the numerator and denominator
=limx→0(√1+x2−√1+x)(√1+x3−√1+x)×(√1+x2+√1+x)(√1+x3+√1+x)
=limx→0[(1+x2)−(1+x)](√1+x3+√1+x)(√1+x3−√1+x)(√1+x2+√1+x)(√1+x3+√1+x)=limx→0(x2−x)(√1+x3+√1+x)(√1+x2+√1+x)(1+x3−1−x)
=limx→0x(x−1)(√1+x3+√1+x)(√1+x2+√1+x)(x2−1)x [It is of (00) form]
=limx→0x(x−1)(√1+x3+√1+x)(√1+x2+√1+x)(x)(x−1)(x+1)
=limx→0(√1+x3+√1+x)(√1+x2+√1+x)(x+1)
=22=1