limx→0√1+x+x2−√x+12x2
Rationalising the numerator
=limx→0(√1+x+x2−√x+1)×(√1+x+x2+√x+1)2x2(√1+x+x2+√x+1)
=limx→0(1+x+x2)−(x+1)(√1+x+x2+√x+1)
=limx→0x22x2(√1+x+x2+√x+1)
=12(√1+√1)
=12×2=14
limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2