limx→0tan−1x−sin−1xx3is equal to
1/2
-1/2
1
-1
limx→0tan−1x−sin−1xx3 (00form)limx→011+x2−1√1−x23x2limx→0√1−x2−(1+x2)3x2(1+x2)√1−x2limx→0(1−x2)−(1+x2)23x2(1+x2)√1−x2[√1−x2+(1+x2)]=−36=−12
The value of limx→1[sin sin−1x] is