limx→0x3cotx1−cosx
=limx→0x3tanx(1−cosx)
=limx→0x3tanx.2sin2x2
=limx→01tanxx×2sin2x2x2
=1(limx→0tanxx)×2(limx→0sinx2x2)2×14
=11×2×1×14[∵lim0→0sinθθ=1,lim0→0tanθθ=1]
=2
limx→0 (x3cotx)1−cosx = [AI CBSE ; DSSE 1988]