The correct option is A 1
Using L' Hospital Rule
Req. Limit = limx→0(ex−1)+xex−2sinx(1−cosx)+x(sinx)(00)
Again using L' Hospital rule
=limx→0(ex+ex+xex−2cosx)sinx+sinx+xcosx(00)
Again using L' Hospital Rule
= limx→0ex+ex+ex+xex+2sinxcosx+cosx+cosx−xsinx
= 1+1+1+0+01+1+1−0=1