limx→0x√1+x−√1−x
By Rationalising the denominator
limx→0x√1+x−√1−x×(√1+x+√1−x)(√1+x+√1−x)
=limx→0x(√1+x+√1−x)(√1+x)2−(√1−x)2
=limx→0x(√1+x+√1−x)1+x−1+x
=limx→0x(√1+x+√1−x)2x
=12limx→0(√1+x+√1−xx)x
=12limx→0(√1+x+√1−x)
=12(√1+√1)
=22=1
Evaluate limx→0(x+1)5−1x