limx→0xcosx+2sinxx2+tanx
Dividing numerator and denominator by x
=limx→0cosx+2sinxxx+tanxx
=limx→0cosx+limx→02sinxxlimx→0x+limx→0tanxx
=cos0+2 limx→0sinxxx+limx→0tanxx
=1+20+1=3 [∵limx→0sinxx=1,limx→0tanxx=1]
=3
limx→0xcosx+sinxx2+tanx
You are given cosx=1−x22!+x44!−x66!......; sinx=x−x33!+x55!−x77!......; tanx=x+x33+2x515...... Then the value of limx→0xcosx+sinxx2+tanx is