limx→0(3x+|x|7x−5|x|)=
does not exist
limx→0−(3x+|x|7x−5|x|)=limh→0(3(0−h)+|0−h|7(0−h)−5|0−h|)=limh→0(−3h+h−7h−5h)=limh→0(−2h−12h)=16limx→0+(3x+|x|7x−5|x|)=limh→0(3(0+h)+|0+h|7(0+h)−5|0+h|)=limh→0(3h+h7h−5h)=limh→0(4h2h)=2L.H.L ≠ R.H.L.
Hence, the limit does not exist.