limx→0{ex+e−x−2x2}1x2
limx→0{ex+e−x−2x2}1x2=limx→0{1+ex+e−x−2x2−1}(1x2)=elimx→0(ex+e−x−2x2−1)×(1x2)∵ex=1+x1!+x22!+x33!+⋯∝e−x=1−x1!+x22!−x33!+⋯∝ex+e−x=2+2x22!+2x44!+⋯∝=elimx→0(2+2x22!+2x44!⋯∝−2x2−1)×(1x2)=elimx→0(2x22!+2x44!+⋯∝x4−1x2)=elimx→0(x2+x412+⋯∝−x2x4)=e112