limx→0logtan2x(tan22x)
Let,
y=logtan2xtan22x=logtan22x=(tan2x)y=2logtan2x=2ylogtanx⇒y=logtan2xlogtanx⇒limx→0y=limx→0logtan2xlogtanx
Using L-Hospital Rule
⇒limx→0y=limx→01tan2x×sec22x×21tanxsec2x⇒limx→0y=limx→02sec22xtan2x×tanxsec2x⇒limx→0y=limx→02tanxtan2x(limx→0secx=4)
⇒limx→0y=limx→02tanxx×xtan2x2x×2x⇒limx→0y=limx→01(limx→0tanxx=1)⇒limx→0logtan2x(tan22x)=1