limx→0+x(xx−1)=pandlimx→0+xxx−1=q, then p – q is equal to
A
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
can’t be determined
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 2 limx→0+(x)(xx−1)=p Let I=xx ∴logI=limx→0+xlnx=limx→0+lnx1x=0∴I=1logp=limx→0+(xx−1)lnx=limx→0+(exlnx−1)lnxlimx→0+(exlnx−1)xlnx(xlnx)lnxlimx→0+(lnx)21x=0 ∴ p = 1 q=limx→0+(xxx−1)=limx→0+(x1−1)=−1∴q=−1∴p−q=2