limx→11+cosπx(1−x)2
⇒x→1,x−1→0, let x−1=y
as x→1,y→0
=limy→01+cosπ(y+1)(−y)2
=limy→01+cos(π+πy)y2
=limy→01−cos(πy)y2
=limy→02sin2πy2y2
=2(limy→0.sinπy2πy2)2×π24
=2×1×π24=π22