limx→1x−1√x2+3−2
Rationalising the denominator
=limx→1(x−1)×(√x2+3+2)(√x2+3−2)(√x2+3+2)
=limx→1(x−1)×(√x2+3+2)(x2+3−4)
=limx→1(x−1)×(√x2+3+2)(x2−1)
=limx→1(x−1)×(√x2+3+2)(x−1)(x+1)
=limx→1√x2+3+2x+1
⇒√1+3+21+1
=2+22
=42=2
limx→1{x−2x2−x−1x3−3x2+2x}