limx→−1x3+1x+1
=limx→−1(x+1)(x2−x+1)(x+1)
[a3+b3=(a+b)(a2+b2−ab)]
=limx→−1(x2−x+1)
=(−1)2−(−1)+1
=1+1+1
=3
limx→1x3−3x+1x−1
limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2