limx→1[x−1], Where [.] is the greatest integer function, is equal to
1
2
0
None of these
We have, limx→1−[x−1]=limh→0[1−h−1]=limh→0[−h]=−1 (k−1<k−h<k⇒[k−h]=k−1kϵZ) Also, limx→1+[x−1]=limh→0[1+h−1]=limh→0[h]=0 ∴limx→1−[x−1]≠limx→1+[x−1]