limx→2{1x−2−2(2x−3)x3−3x2+2x}
limx→2{1x−2−2(2x−3)x3−3x2+2x}
=limx→2[1x−2−2(2x−3)x(x2−2x−x+2)]
=limx→2[1x−2−2(2x−3)x(x−2)(x−1)]
=limx→2[x(x−1)−2(2x−3)x(x−1)(x−2)]
=limx→2[x2−x−4x+6x(x−1)(x−2)]
=limx→2[x2−5x+6x(x+1)(x−2)]
=limx→2[x2−2x−3x+6x(x−1)(x−2)]
=limx→2[x(x−2)−3(x−2)x(x−1)(x−2)]
=limx→2[(x−2)(x−3)x(x−1)(x−2)]
[It is of (00) form]
=limx→2x−3x(x−1)
=−12