limx→3x−3√x−2−√4−x
limx→3x−3√x−2−√4−x
Rationalising the denominator
=limx→3x−3(√x−2−√4−x)×(√x−2+√4−x)(√x−2+√4−x)
=limx→3(x−3)(√x−2+√4−x)(x−2)−(4−x)
=limx→3(x−3)(√x−2+√4−x)x−2−4+x
=limx→3(x−3)(√x−2+√4−x)2(x−3)
=12limx→3(√x−2+√4−x)
=12(√3−2+√4−3)
=12(√1+√1)
=12(1+1)=22=1