limx→3(x2−9)(1x+3+1x−3)
=limx→3(x2−9)[x−3+x+3(x+3)(x−3)]
=limx→3(x2−9)[2x(x+3)(x−3)]
=limx→3(x−3)(x+3)(2x)(x+3)(x−3)
=limx→32(x)=2(3)=6
Evaluate (i) limx→3(x2−9x−3)
(ii) limx→1((x2−4x+3)x−1)
limx→3x2−x−6x3−3x2+x−3