limx→5x−5√6x−5−√4x+5
limx→5x−5√6x−5−√4x+5
Rationalising the denominator
=limx→5x−5(√6x−5−√4x+5)×(√6x−5+√4x+5)(√6x−5+√4x+5)
=limx→5(x−5)(√6x−5+√4x+5)(6x−5)−(4x+5)
=limx→5(x−5)(√6x−5+√4x+5)2x−10
=limx→5(x−5)(√6x−5+√4x+5)2(x−5)
=√6(5)−5+√4(5)+52
=√25+√252
=5+52=5