limx→axn−anx−a is equal to
nan
nan−1
na
1
limx→axn−anx−a =limx→a+xn−anhx−a [∵f(x)exists,limx→af(x)=limx→a+f(x)] =limh→0(a+h)n−ana+h−a =limh→0an[(1+ha)n−1]h =anlimh→0[1+n.ha+n(n−1)h22!h2a2⋯+⋯−1] =anlimh→0[na+h(h−1)2!ha2+⋯] =anna =nan−1
Find the value of limx→ axn−anx−a