We have,
limx→π2⎛⎜ ⎜ ⎜ ⎜⎝2−cosx−1x(x−π2)⎞⎟ ⎟ ⎟ ⎟⎠
This is the 00 form.
So, apply L-Hospital rule
limx→π2⎛⎜ ⎜ ⎜ ⎜⎝2−cosxloge2×−(−sinx)−0(x−π2)+x(1−0)⎞⎟ ⎟ ⎟ ⎟⎠
limx→π2⎛⎜ ⎜ ⎜ ⎜⎝sinx(2−cosxloge2)(x−π2)+x⎞⎟ ⎟ ⎟ ⎟⎠
=sinπ2⎛⎝2−cosπ2loge2⎞⎠(π2−π2)+π2
=1×(20loge2)0+π2
=loge2π2
=2loge2π
=loge4π
Hence, this is the answer.