limx→π2(1−sin x) tan x will be equal to _____
0
As x→π2 ,sin x→1
i.e.(1−sin x)→0 and
as x→π2 ,tan x→ ∞
or 1tan x=cot x→0
So using this information we can say that x→π2,(1−sin x)tan x or(1−sin x)cot x comes to 00 form
So we can apply L-Hospitals rule.
limx→π2 (1−sin x)cot x=limx→π2ddx(1−sin x)ddx(cot x)=limx→π2(−cosx)−cosec2x
=limx→π2 sin2 x cos x=0
Which is the correct answer.