limx→π2(π2−x)sin x−2 cos x(π2−x)+cot x
limx→π2(π2−x)sin x−2 cos x(π2−x)+cot x
Let x=π2+y⇒y=x−π2 as x→π2,y→0
=limy→0(y sin(π2−y)−2 cos(π2−y))y+cot(π2−y)=limy→0(y cos y−2 sin y1+tan y)
=limy→0(cos y−2sin yy1+tan yy)=limy→0cos y−2 limy→0sin yy1+limy→0tan yy [∵limy→0sin yy=1, limy→0tan yy=1]
=1−21+1=−12=−12