limx→π2√2−√1+sin xcos2 x
=limx→π2√2−√1+sin xcos2 x×√2+√1+sin x√2+√1+sin x=limx→π22−1−sin xcos2x(√2+√1+sin x)
=limx→π21−sin x(1−sin2x)(√2+√1+sin x)=limx→π21(1+sin x)(√2+√1+sin x)
=1(1+1)(√2+√2)=1(4√2)
limx→π21−sinxcos2x
Find the value of limx→π4cos x−sin xcos 2 x
limx→π2√2−sin x−1(π2−x)2