wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ41tan x12sin x

Open in App
Solution

limxπ41tan x12sin x

xπ4, then xπ40, let xπx=yy0

=limy01tan(y+π4)12sin(y+π4)

=limy01(tanπ4+tan y1+tanπ4+tan y)12(sin y cosπ4+cos y sinπ4)

=limy0(1(1+tan y1tan y))12(sin y2+cos y2)=limy0(1tan y1tan y)(1tan y)(1sin ycos y)

=2limy0tan ylimy0(1tan y)×limy0(1sin ycos y)

=2(limy0tan yy)×y(limy0(1)limy0tan y)×(1limy0sin yy×ycos 0)

=limy02y(1y)(1y1)=limy02y(1y)(y)

=limy021y=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon