limx→π41−tan x1−√2sin x
limx→π41−tan x1−√2sin x
⇒x→π4, then x−π4→0, let x−πx=y⇒y→0
=limy→01−tan(y+π4)1−√2sin(y+π4)
=limy→01−(tanπ4+tan y1+tanπ4+tan y)1−√2(sin y cosπ4+cos y sinπ4)
=limy→0(1−(1+tan y1−tan y))1−√2(sin y√2+cos y√2)=limy→0(1−tan y−1−tan y)(1−tan y)(1−sin y−cos y)
=−2limy→0tan ylimy→0(1−tan y)×limy→0(1−sin y−cos y)
=−2(limy→0tan yy)×y(limy→0(1)−limy→0tan y)×(1−limy→0sin yy×y−cos 0)
=limy→0−2y(1−y)(1−y−1)=limy→0−2y(1−y)(−y)
=limy→021−y=2