limx→π4cos x−sin x(π4−x)(cos x+sin x)
limx→π4cos x−sin x(π4−x)(cos x+sin x)
⇒x→π4, then x−π4→0 let x−π4=y ∴y→0
=limy→0cos(π4+y)−sin(π4+y)−y(cos(π4+y)+sin(π4+y))
=limy→0[(cosπ4cos y−sinπ4sin y)−(sinπ4cos y+cosπ4sin y)]−y(cos(π4+y)+sin(π4+y))
=limy→0[cos y√2−sin y√2−cos y√2−sin y√2]−y(cos(π4+y)+sin(π4+y))=limy→0−2sin y√2−y(cos(π4+y)+sin(π4+y))
=√2limy→0(sin yy)×1limy→0[cos(π4+y)+sin(π4+y)]
=√2×1×11√2+1√2=√2×12√2=√2×√22=1