limx→π4f(x)−f(π4)x−π4, where f(x) = sin 2x
limx→π4(sin2x−sin2(π4)x−π4) [∵ given f(x) = sin 2x]
=limx→π4(sin2x−sinπ2x−π4)
⇒x→π4⇒x−π4→0, let x−π4=y
as x→π4,y→0
limy→0(sin2(y+π4)−1y)
=limy→0sin(π2+2y)−1y
=limy→0cos2y−1y
=−limy→01−cos2yy=−limy→02sin2yy
=−2(limy→0sin yy)2×y[∵limθ→0sin θθ=1]
=−2×0=0