limx→π4√2cosx−1cotx−1 is equal to
12
limx→π4√2cosx−1cotx−1
Rationalising the numerator, we get:
=limx→π4(√2cosx−1cotx−1)×(√2cosx+1√2cosx+1)
=limx→π4(2cos2x−1)(cosx−sinx)×sinx(√2cosx+1)
limx→π4(cos2x−sin2x)(cosx−sinx)×sinx(√2cosx+1)
=limx→π4(cosx+sinx)sinx(√2cosx+1)
=(cosπ4+sinπ4)sinπ4(√2cosπ4+1)
=limx→π4=⎛⎜
⎜⎝1√2+1√2⎞⎟
⎟⎠(1√2)√2.12+1
=(2√2×1√2)2
=12